Multiple coverings of the farthest-off points and multiple saturating sets in projective spaces

نویسندگان

  • Daniele Bartoli
  • Massimo Giulietti
  • Stefano Marcugini
  • Fernanda Pambianco
چکیده

For the kind of coverings codes called multiple coverings of the farthestoff points (MCF) we define μ-density as a characteristic of quality. A concept of multiple saturating sets ((ρ, μ)-saturating sets) in projective spaces PG(N, q) is introduced. A fundamental relationship of these sets with MCF codes is showed. Lower and upper bounds for the smallest possible cardinality of (1, μ)-saturating sets are obtained. In PG(2, q), constructions of small (1, μ)-saturating sets improving the probabilistic bound are proposed. A number of results on the spectrum of sizes of minimal (1, μ)-saturating sets are obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on multiple coverings of the farthest-off points

In this work we summarize some recent results, to be included in a forthcoming paper [1]. We define μ-density as a characteristic of quality for the kind of coverings codes called multiple coverings of the farthest-off points (MCF). A concept of multiple saturating sets ((ρ, μ)-saturating sets) in projective spaces PG(N, q) is introduced. A fundamental relationship of these sets with MCF is sho...

متن کامل

Further results on multiple coverings of the farthest-off points

Multiple coverings of the farthest-off points ((R,μ)-MCF codes) and the corresponding (ρ, μ)-saturating sets in projective spaces PG(N, q) are considered. We propose some methods which allow us to obtain new small (1, μ)-saturating sets and short (2, μ)-MCF codes with μ-density either equal to 1 (optimal saturating sets and almost perfect MCF-codes) or close to 1 (roughly 1+1/cq, c ≥ 1). In par...

متن کامل

Multiple coverings of the farthest-off points with small density from projective geometry

In this paper we deal with the special class of covering codes consisting of multiple coverings of the farthest-off points (MCF). In order to measure the quality of an MCF code, we use a natural extension of the notion of density for ordinary covering codes, that is the μ-density for MCF codes; a generalization of the length function for linear covering codes is also introduced. Our main result...

متن کامل

On co-Farthest Points in Normed Linear Spaces

In this paper, we consider the concepts co-farthest points innormed linear spaces. At first, we define farthest points, farthest orthogonalityin normed linear spaces. Then we define co-farthest points, co-remotal sets,co-uniquely sets and co-farthest maps. We shall prove some theorems aboutco-farthest points, co-remotal sets. We obtain a necessary and coecient conditions...

متن کامل

Remotality and proximinality in normed linear spaces

In this paper, we consider the concepts farthest points and nearest points in normed linear spaces, We obtain a necessary and coecient conditions for proximinal, Chebyshev, remotal and uniquely remotal subsets in normed linear spaces. Also, we consider -remotality, -proximinality, coproximinality and co-remotality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012